library(tidyverse)
counties <- read_csv("https://raw.githubusercontent.com/sds-192-intro-fall22/sds-192-public-website-quarto/a8b64e3070ca2543b904d4d92780b09e6062ced6/website/data/nbi_counties.csv")
route_prefixes <- read_csv("https://raw.githubusercontent.com/sds-192-intro-fall22/sds-192-public-website-quarto/a8b64e3070ca2543b904d4d92780b09e6062ced6/website/data/nbi_route_pre.csv")
maintenance <- read_csv("https://raw.githubusercontent.com/sds-192-intro-fall22/sds-192-public-website-quarto/a8b64e3070ca2543b904d4d92780b09e6062ced6/website/data/nbi_maintenance.csv")
kinds <- read_csv("https://raw.githubusercontent.com/sds-192-intro-fall22/sds-192-public-website-quarto/a8b64e3070ca2543b904d4d92780b09e6062ced6/website/data/nbi_kind.csv")
nbi_ma <- read.delim("https://www.fhwa.dot.gov/bridge/nbi/2022/delimited/MA22.txt", sep = ",") |>
left_join(counties) |>
left_join(route_prefixes) |>
left_join(maintenance) |>
left_join(kinds) |>
filter(SERVICE_ON_042A == 1) |>
select(STRUCTURE_NUMBER_008, COUNTY_CODE_003_L, ROUTE_PREFIX_005B_L, MAINTENANCE_021_L, YEAR_BUILT_027, ADT_029, STRUCTURE_KIND_043A_L, STRUCTURAL_EVAL_067, BRIDGE_IMP_COST_094) |>
mutate(STRUCTURE_KIND_043A_L =
case_when(
STRUCTURE_KIND_043A_L == "Concrete continuous" ~ "Concrete",
STRUCTURE_KIND_043A_L == "Steel continuous" ~ "Steel",
STRUCTURE_KIND_043A_L == "Prestressed concrete continuous" ~ "Prestressed concrete",
TRUE ~ STRUCTURE_KIND_043A_L)) |>
mutate(BRIDGE_IMP_COST_094 = BRIDGE_IMP_COST_094 * 1000)
rm(counties, kinds, maintenance, route_prefixes)Day 6: Frequency`
Question
Check column names and values.
#Check the column names for nbi_maQuestion
Create a plot to visualize the distribution of structural evaluations for bridges in MA. What does the height of the bar represent?
# Plot HereQuestion
Facet the previous plot by county
# Plot HereQuestion
Create a plot to visualize the frequency of bridges in each county. What does the height of the bar represent?
# Plot HereQuestion
Color the previous plot by route prefix, and set the position to dodge. If you finish early, experiment with adjust the plot’s palette. (Refer to ggplot() cheatsheet and lecture slides for help.)
# Plot Here